Topology is the study of invariant properties of mathematical objects. Through the study of topology, mathematicians to translate properties between mathematical objects. There are many different subfields of topology, e.g. general topology (a.k.a. point-set topology), algebraic topology, etc. Unfortunately (or fortunately?), I have only encountered general topology in my undergraduate degree.

Perhaps one interesting (basic) result in topology is as follows

Given a space and a collection of topologies , where and is an index set, the intersection is also a topology on .

Given a collection of objects that share property a property, let’s say property , we do not expect the union and intersection of this collection to share the same properties. For instance, the set , where is an integer, is finite. But when you take the union of all singleton set (namely ), we have an infinite set.

So why is the above statement true? To prove this, we need need at least the definition of a topology, so here it goes:

Let be a set, and be its power set. A subset is called a topology if the following conditions hold:

- Arbitrary union of elements of is also an element of , i.e. where is arbitrarily chosen.
- Finite intersection of elements of is also an element of , i.e. if , then where is arbitrarily chosen

So far so good. Now that we know the definition of a topology, we can easily see that the union of topologies is **NOT** a topology; consider , and we have two topologies and , then the union is

This violates the arbitrary union property; and are elements of the union, but is not. Note that this is not to say that all unions of topologies does not result in a topology; it is only the counterexample to the claim that all unions of topologies gives a topology.

We have shown above that the union of topologies itself need not be a topology. So why is the intersection of of topologies is itself a topology? Clearly, by definition of topology, each topology includes the sets and , thus the empty set and is in the intersection. Now let be an index set, and for , be an arbitrary family of elements in the intersection of the topologies. Then by definition of topology, arbitrary unions of elements in is also in for all . Thus the arbitrary union is also an element of . By similar reasoning, we can also conclude that finite intersection of elements in is also an element of itself. Thus is a topology.

### Like this:

Like Loading...